Microglial activation precedes dopamine terminal pathology in methamphetamine-induced neurotoxicity.

نویسندگان

  • Matthew J LaVoie
  • J Patrick Card
  • Teresa G Hastings
چکیده

Previous studies have demonstrated methamphetamine (METH)-induced toxicity to dopaminergic and serotonergic axons in rat striatum. Although several studies have identified the nature of reactive astrogliosis in this lesion model, the response of microglia has not been examined in detail. In this investigation, we characterized the temporal relationship of reactive microgliosis to neuropathological alterations of dopaminergic axons in striatum following exposure to methamphetamine. Adult male Sprague-Dawley rats were administered a neurotoxic regimen of methamphetamine and survived 12 h, or 1, 2, 4, and 6 days after treatment. Immunohistochemical methods were used to evaluate reactive changes in microglia throughout the brain of methamphetamine-treated rats, with a particular focus upon striatum. Pronounced morphological changes, indicative of reactive microgliosis, were evident in the brains of all methamphetamine-treated animals and were absent in saline-treated control animals. These included hyperplastic changes in cell morphology that substantially increased the size and staining intensity of reactive microglia. Quantitative analysis of reactive microglial changes in striatum demonstrated that these changes were most robust within the ventrolateral region and were maximal 2 days after methamphetamine administration. Analysis of tissue also revealed that microglial activation preceded the appearance of pathological changes in striatal dopamine fibers. Reactive microgliosis was also observed in extra-striatal regions (somatosensory and piriform cortices, and periaqueductal gray). These data demonstrate a consistent, robust, and selective activation of microglia in response to methamphetamine administration that, at least in striatum, precedes the appearance of morphological indicators of axon pathology. These observations raise the possibility that activated microglia may contribute to methamphetamine-induced neurotoxicity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Methamphetamine neurotoxicity in dopamine nerve endings of the striatum is associated with microglial activation.

Methamphetamine intoxication causes long-lasting damage to dopamine nerve endings in the striatum. The mechanisms underlying this neurotoxicity are not known but oxidative stress has been implicated. Microglia are the major antigen-presenting cells in brain and when activated, they secrete an array of factors that cause neuronal damage. Surprisingly, very little work has been directed at the st...

متن کامل

Role of microglia in methamphetamine-induced neurotoxicity.

Methamphetamine (Meth) is an addictive psychostimulant widely abused around the world. The chronic use of Meth produces neurotoxicity featured by dopaminergic terminal damage and microgliosis, resulting in serious neurological and behavioral consequences. Ample evidence indicate that Meth causes microglial activation and resultant secretion of pro-inflammatory molecules leading to neural injury...

متن کامل

Role of Sigma Receptors in Methamphetamine-Induced Neurotoxicity

Methamphetamine (METH) is a widely abused substance world over. Currently, there is no effective pharmacotherapy to treat its effects. This necessitates identification of potential novel therapeutic targets. METH interacts with sigma (σ) receptors at physiologically relevant micromolar concentrations. In addition, σ receptors are present in organs like the brain, heart, and lungs at which METH ...

متن کامل

Minocycline blocks c-terminal fragments of amyloid precursor protein-induced neurotoxicity by inhibition of cytochrome c release and caspase-12 activation

Minocycline is a second-generation tetracycline that effectively crosses the blood-brain barrier. It has remarkable neuroprotective qualities in models of cerebral ischaemia, traumatic brain injury, Huntington’s and Parkinson’s diseases. However, there is no evidence about neuroprotective effects of minocycline on AD. Alzheimer’s disease (AD) is a neurodegenerative disorder characterized neurop...

متن کامل

Cyclooxygenase-2 is an obligatory factor in methamphetamine-induced neurotoxicity.

Methamphetamine causes persistent damage to dopamine nerve endings of the striatum. The mechanisms underlying its neurotoxicity are not fully understood, but considerable evidence points to oxidative stress as a probable mechanism. A recent microarray analysis of gene expression changes caused by methamphetamine revealed that cyclooxygenase-2 (COX-2) was induced along with its transcription fac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Experimental neurology

دوره 187 1  شماره 

صفحات  -

تاریخ انتشار 2004